Bounding on rough terrain with the LittleDog robot
نویسندگان
چکیده
A motion planning algorithm is described for bounding over rough terrain with the LittleDog robot. Unlike walking gaits, bounding is highly dynamic and cannot be planned with quasi-steady approximations. LittleDog is modeled as a planar five-link system, with a 16-dimensional state space; computing a plan over rough terrain in this high-dimensional state space that respects the kinodynamic constraints due to underactuation and motor limits is extremely challenging. Rapidly Exploring Random Trees (RRTs) are known for fast kinematic path planning in high-dimensional configuration spaces in the presence of obstacles, but search efficiency degrades rapidly with the addition of challenging dynamics. A computationally tractable planner for bounding was developed by modifying the RRT algorithm by using: (1) motion primitives to reduce the dimensionality of the problem; (2) Reachability Guidance, which dynamically changes the sampling distribution and distance metric to address differential constraints and discontinuous motion primitive dynamics; and (3) sampling with a Voronoi bias in a lower-dimensional “task space” for bounding. Short trajectories were demonstrated to work on the robot, however open-loop bounding is inherently unstable. A feedback controller based on transverse linearization was implemented, and shown in simulation to stabilize perturbations in the presence of noise and time delays.
منابع مشابه
Motion Planning for Bounding on Rough Terrain with the LittleDog Robot
In this paper we develop an RRT-based motion planner that achieved bounding in simulation with the LittleDog robot over extremely rough terrain. LittleDog is a quadruped robot that has 12 actuators, and a 36-dimensional state space; the task of bounding involves differential contstraints due to underactuation and motor limits, which makes motion planning extremely challenging. Rapidly-exploring...
متن کاملModeling, System Identification, and Control for Dynamic Locomotion of the LittleDog Robot on Rough Terrain
In this thesis, I present a framework for achieving a stable bounding gait on the LittleDog robot over rough terrain. The framework relies on an accurate planar model of the dynamics, which I assembled from a model of the motors, a rigid body model, and a novel physically-inspired ground interaction model, and then identified using a series of physical measurements and experiments. I then used ...
متن کاملDynamic Gaits and Control in Flexible Body Quadruped Robot
Legged robots are highly attractive for military purposes such as carrying heavy loads on uneven terrain for long durations because of the higher mobility they give on rough terrain compared to wheeled vehicles/robots. Existing state-of-the-art quadruped robots developed by Boston Dynamics such as LittleDog and BigDog do not have flexible bodies. It can be easily seen that the agility of quadru...
متن کاملLearning, planning, and control for quadruped locomotion over challenging terrain
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstra...
متن کاملOptimization and learning for rough terrain legged locomotion
We present a novel approach to legged locomotion over rough terrain that is thoroughly rooted in optimization. This approach relies on a hierarchy of fast, anytime algorithms to plan a set of footholds, along with the dynamic body motions required to execute them. Components within the planning framework coordinate to exchange plans, cost-to-go estimates, and “certificates” that ensure the outp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 30 شماره
صفحات -
تاریخ انتشار 2011